## **Circuit synthesis in antenna and RF optimization**

Jussi Rahola Optenni Ltd

©2024 Optenni Ltd. All rights reserved.

1

#### Contents

- Application of circuit synthesis methods in various contexts
  - Single port antenna matching
    - Optimization goals in matching
  - Simultaneous multiport antenna matching
  - Tunable matching circuit design
  - Optimizing carrier aggregation scenarios
- Conclusions and lessons learned



# Optenni Lab - Circuit Synthesis Software for Antenna and RF Optimization

- Worldwide leading solution for circuit synthesis for antenna applications
- Filling a gap between existing electromagnetic and circuit simulators
  - Optimization of both antenna and circuit quantities
  - Design automation for eliminating repetitive design tasks
  - Offering solutions instead of building blocks
- Used by leading wireless companies worldwide
  - 7 out of the 10 largest technology companies in the world are our customers



Optenni Ltd was founded in 2009



### Single port antenna matching synthesis

- Typical workflow:
  - Get impedance and efficiency data from electromagnetic simulators or from measurements
  - Select operation band from a list of wireless systems
  - Select number of components
  - Select inductor and capacitor series
  - Press OK
- Within second multiple optimized topologies are generated

| Add   | d Operation Frequency Band   |      |
|-------|------------------------------|------|
| Frequ | iency band                   |      |
| Sele  | ect wireless system 🔻 💽 Both | upli |
|       | User-defined frequency bands | •    |
|       | GSM                          | •    |
|       | WCDMA                        | •    |
|       | 3GPP FDD bands               | •    |
|       | 3GPP TDD bands               | •    |
|       | 5G NR bands in FR1           | •    |
|       | 5G NR bands in FR2           | •    |
|       | Satellite communication      | •    |
|       | Satellite navigation         | •    |
|       | Zigbee                       | •    |
|       | LoRa                         | •    |
|       | ISM                          | •    |
|       | Unlicensed Bands             | •    |
|       | WLAN                         | •    |
|       | UWB HRP                      | •    |
|       | Misc                         | •    |
|       | NFC                          |      |

1120 (703-003 IVIL12, 1 D D) n29 (717-728 MHz, SDL) n30 (2305-2360 MHz, FDD) n34 (2010-2025 MHz, TDD) n38 (2570-2620 MHz, TDD) n39 (1880-1920 MHz, TDD) n40 (2300-2400 MHz, TDD) n41 (2496-2690 MHz, TDD) n46 (5150-5925 MHz, TDD) n47 (5855-5925 MHz, TDD) n48 (3550-3700 MHz, TDD) n50 (1432-1517 MHz, TDD) n51 (1427-1432 MHz, TDD) n53 (2483.5-2495 MHz, TDD) n54 (1670-1675 MHz, TDD) n65 (1920-2200 MHz, FDD) n66 (1710-2200 MHz, FDD) n67 (738-758 MHz, SDL) n70 (1695-2020 MHz, FDD) n71 (617-698 MHz, FDD) n74 (1427-1518 MHz, FDD) n75 (1432-1517 MHz, SDL) n76 (1427-1432 MHz, SDL)



#### Examples of generated circuits





#### Increase number of components (ideal case)





#### **Effect of tolerances and losses**





### **Optimization goals in antenna matching**

Instead of minimizing S11, maximize antenna efficiency 



©2024 Optenni Ltd. All rights reserved.

### Simultaneous multiport antenna matching

- Enter efficiency targets for each port
- Select component type
- Press OK
- Multiple optimized topologies presented









9

#### Efficiency in multiport antenna systems

- In a multiport antenna system, the radiation efficiency is a function of the termination and excitation of all ports
- The termination and excitation affects the near fields and the far fields
- If the complex radiation patterns of each port are known (one port excited at a time), the radiation efficiency for each termination and excitation condition can be found by a linear combination of the element patterns







#### Loss terms in multiport antenna matching



Goal: maximize minimum efficiency over all ports and all target frequencies



#### Tunable matching circuit design

- Define operation targets for multiple frequency configurations
- Insert a switch to the aperture port and set the switch state for each frequency configuration
- Set component types and synthesis settings



|        |                | Lucion larg                        |                                     |                                        |                                |                      |     |      |  |
|--------|----------------|------------------------------------|-------------------------------------|----------------------------------------|--------------------------------|----------------------|-----|------|--|
| ow     | Mid            | High                               |                                     |                                        |                                |                      |     |      |  |
| nter o | optimiza       | ation target                       | s for frequency                     | configuration                          | Low'                           |                      |     |      |  |
| Port   | 1 0            | eneral tara                        | -                                   |                                        |                                |                      |     |      |  |
|        |                | reneral tary                       | ets                                 |                                        |                                |                      |     |      |  |
| En     | ter opti       | mization ta                        | rgets for externa                   | l port 1                               |                                |                      |     |      |  |
| En     | ter opti       | mization ta<br>Id band             | rgets for externa                   | l port 1<br>eq. End freq.              | Туре                           | Target value         |     | Name |  |
| En     | ter opti<br>Ad | mization ta<br>Id band<br>stopband | rgets for externa Start fre 700 MH: | l port 1<br>eq. End freq.<br>z 800 MHz | Type<br>Eff passband<br>port 1 | Target value<br>0 dB | Low | Name |  |

#### Generic reactance component





#### **Tunable results**



Goal: maximize minimum efficiency over all frequency configurations (with different switch states)

Lesson learned: switch off-state capacitance as important as on-state resistance



#### Carrier aggregation optimization

- Challenge: multiple RF branches need to be active at the same time
- The different branches are loading each other
- Design example:
  - Receive branches for band 7, bands 1+3 and band 40
  - Any combinations for the three cases are allowed
  - A multithrow SP3T switch is used





#### Carrier aggregation setup

- Instead of optimizing all at once, it is more efficient to prematch the different branches first
- Final setup: define the pass and stop band targets for the 7 configurations





| ost functio             | n: -1.9       |      |        |                   |           |              |                 |
|-------------------------|---------------|------|--------|-------------------|-----------|--------------|-----------------|
| CA B7                   | CA B1+B3      | C/   | A B40  | CA B7+B1+B3       | CA B7+B40 | CA B1+B3+B40 | CA B7+B1+B3+B40 |
| Target type Freq. [GHz] |               | iHz] | Target |                   |           | Value        |                 |
| S31 passba              | and 2.11 - 2. | 17   | 0 dB   | min/ave -1.7/-1.1 | dB        |              |                 |
| S41 passba              | and 1.805 - 1 | 88.1 | 0 dB   | min/ave -0.9/-0.5 | dB        |              |                 |
| S51 passba              | and 2.3 - 2.4 |      | 0 dB   | min/ave -1.9/-1.1 | dB        |              |                 |
|                         |               |      |        |                   |           |              |                 |



#### Carrier aggregation results









#### **Conclusions and lessons learned**

- Matching circuit synthesis can produce multiple broadband matching circuits which operate between two complex frequency dependent impedances
- Instead of minimizing reflected power, maximize power transfer
- When number of matching components is increased, matching circuit losses and tolerance problems may increase
- Simultaneous multiport antenna matching can produce a huge number of topology combinations. Optimize for best efficiency
- In tunable matching, pay attention to switch losses and off-state capacitance
- In carrier aggregation setups, it is useful to prematch parts of the RF chain and then fine-tune the total problem





ANNIVERSARY



15 years of innovation in antenna and RF design automation