This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Challenges in wideband mm-wave phased arrays

Henri Kähkönen

NOT COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Henri Kähkönen

Short introduction

- Name: Henri Kähkönen
- B.Sc, M.Sc, and D.Sc at Aalto university
 - D.Sc studies in Saab-Aalto collaboration concentrated on wideband mmwave array antennas, graduated at the end of 2022
- Currently working at Saab in Tampere as an Antenna engineer

https://www.saab.com/fi/markets/finland/uutiset-ja-tiedotteet/2022/saabin-sirius-compact -tarjoaa-uudenlaista-joustavuutta-elektroniseen-sodankayntiin

Introduction on phased arrays

- An antenna array which sum pattern can be steered or shaped by modifying phase delays (and amplitudes)
- Generally phased arrays have been more common in military applications but are becoming more common in telecommunications
- Passive electronically scanned array (PESA)
 - Single amplifier connected to a feed network with phase shifters
- Active electronically scanned array (AESA)
 - Each element have dedicated amplifiers and phase shifters
 - Possibly multiple transmitters/receivers/transceivers

A few of the challenges

- 1. Moving to higher frequencies decreases the antenna element size / wavelength
 - At 40 GHz wavelength is 7.5 mm -> element spacing ~3.75 mm
- 2. Wideband antennas are generally more complicated
 - Manufacturing methods
- 3. Beam steering requires special consideration in preventing unwanted coupling between elements
- 4. Integrating front-end electronics close to the antenna becomes difficult due to 1. and 2.

1. Decreased antenna element size

- Millimeter waves: 30-300 GHz
 - Antenna element spacing from 5 to 0.5 mm
- Assembling antenna elements or even arrays from multiple sub components is difficult
- Easier to manufacture arrays or subarrays from single piece of material
- Complex geometries with small details restricts how structures can be manufactured

2. Wide-band antennas

- Number of antenna types are capable of wideband operation in isolation
 - Only a few are feasible to use in arrays
- Wideband antennas are generally larger and may require more complex geometries
 - For example in thickness
 - Feeding structure
 - PCB based wide-band antennas require multiple layers and thick substrates
- An example of additively manufactured Kaband (26–40 GHz) arrays

K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5796-5811, Dec. 2018, doi: 10.1109/TMTT.2018.2854174.

J. T. Logan, R. W. Kindt, M. Y. Lee and M. N. Vouvakis, "A New Class of Planar Ultrawideband Modular Antenna Arrays With Improved Bandwidth," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 692-701, Feb. 2018, doi: 10.1109/TAP.2017.2780878

Some manufacturing failures

SLM: aluminum, 3.8 mm element spacing, 8x8 dual polarized array up to 40 GHz

Binder jetting: copper vs stainless steel, 5 mm element spacing, 4x4 dual polarized array module up to 30 GHz

7 NOT COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Henri Kähkönen

Succesfully manufactured arrays

1.

2. 3. Copper, wire electric discharge manufacturing Aluminum alloy, selective laser melting Stainless steel, binder jetting

Feeding structure

9 NOT COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Henri Kähkönen

Comparison between previous arrays

3. Beam steering and antenna coupling

- Closely spaced antenna elements will couple energy to neighboring elements
 - Element design can be simulated to minimize issues
 - Not taking the coupling into account can lead to "scan blindness"
- Behavior can be efficiently simulated in unit cell
 - Single element simulation with boundary conditions simulating infinite array
 - Active reflection coefficient / scan impedance / active impedance
- Measurement of the complete coupling matrix is rather laborious

P. Hannan, "The element-gain paradox for a phased-array antenna," in *IEEE Transactions on Antennas and Propagation*, vol. 12, no. 4, pp. 423-433, July 1964, doi: 10.1109/TAP.1964.1138237.

3. Beam steering and antenna coupling

E-plane steering H-plane steering 60 60 -10-1040Reflection coefficient (dB) 40Reflection coefficient (dB) Steering angle θ (°) Steering angle θ (°) -15-1520200 0 -20-20-20-20-25-25-40-40-60 = 26-60 - 26-30-302830 3238 40 2834 36 38 40 3436 30 32 Frequency (GHz) Frequency (GHz)

4. Integrating front-end electronics in dualpolarized 30 GHz array

Anokiwave AWMF-0158

13 NOT COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Henri Kähkönen

4. Integrating front-end electronics in dualpolarized 30 GHz array

- Very little space to integrate all the required front-end ICs in a "planar" structure
- Cooling, up to 2W per chip
- Measurements
 - Characterization partially based
 on simulations
 - Measuring the antenna separately is difficult due to the small antenna spacing
 - Near-field scanner
 measurements are useful for
 element level observations

Voltage regulation, RF- and control connectors for four modules

H-pol feed

4. Integrating front-end electronics in dualpolarized 30 GHz array

Prototyping and wide-band array antenna systems

Conclusion

- Phased arrays at mmwaves become increasingly more difficult to manufacture and characterize when moving to higher in frequencies
 - Simulations will play higher role than before
- Wide-band arrays at mmwaves are possible but are difficult to implement on a single PCB with electronics
 - Integration possible with narrow band solutions with more simple antennas
- Additive manufacturing can be succesfully used at least up to 40 GHz with complex antenna array geometries with a small impact on performance
- Advances in ICs enable compact mmwave AESAs
 - Wide-band operation may still require more custom solutions

