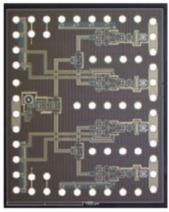
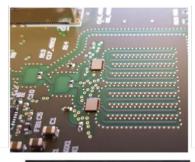


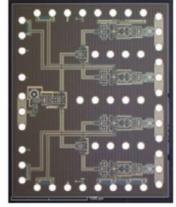
Outline

- Introduction
- FMCW radars
- JCAS
- Extrapolation algorithms
- Fast Burg algorithm
- Results

Introduction


- For imaging radars, angular resolution plays an increasingly important role
 - For example, automotive, aviation, people tracking, JCAS
- The spatial resolution is directly dependent on the size of the antenna aperture, and in MIMO cases the number of channels
- This leads to high complexity
 - High hardware cost
 - Large amount of data
 - Energy consumption
 - Serious heat dissipation problem




FMCW MIMO radars

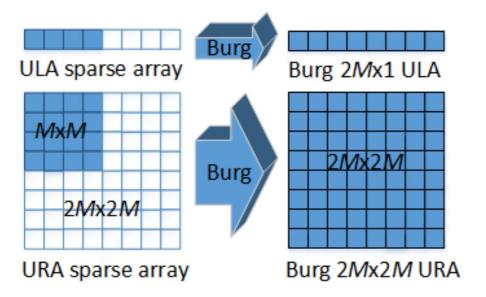
- The VTT's MIMO frequency modulated continuous wave (FMCW) radar operates at 60 GHz and is based on VTTs own modular chipsets
- Manufactured with SiGe technology at IHP Microelectronics
- Frequency division MIMO technique allows the detection of moving targets
- 8 TX and 8 RX channels

FMCW MIMO radars

- The VTT's MIMO frequency modulated continuous wave (FMCW) radar operates at 34 GHz and is based on VTTs own modular chipsets
- 4 TX and 24 RX channels

JCAS

- In Joint Communication and Sensing, JCAS, telecommunications hardware and waveforms are used in sensing
- Complex sensing systems compared to FMCW
- Applications
 - People flow
 - Traffic
 - Environmental monitoring (flooding water, snow depth, road surface condition monitoring, local weather sensing)
- How to handle the complexity
 - · Hybrid analog/digital beamforming
 - In fully digital systems virtual antenna elements through interpolation and/or extrapolation

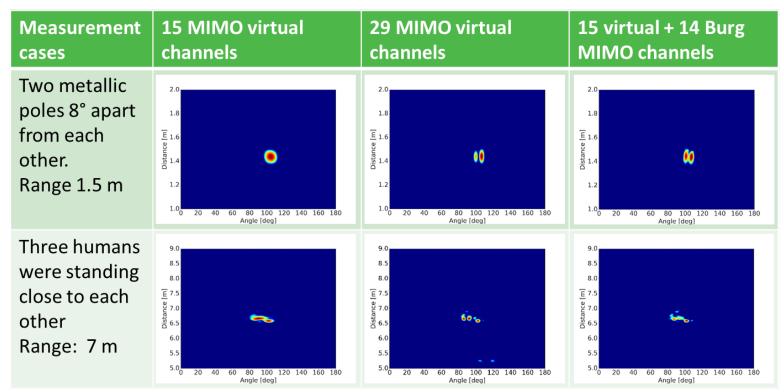


Extrapolation algorithms

 Extrapolation algorithms extend the measurements from a small antenna array to a much larger virtual array through signal processing

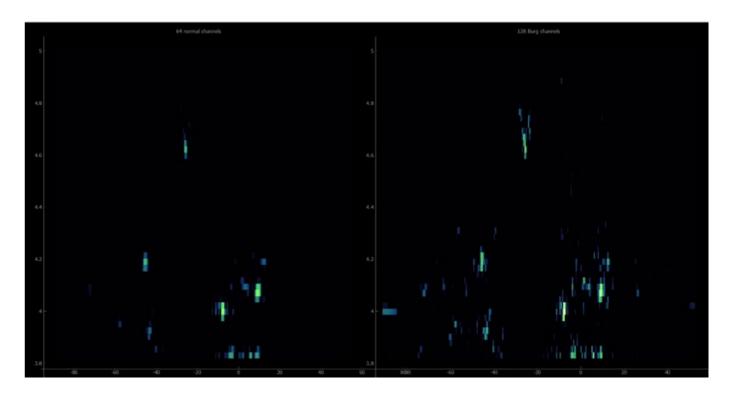
Extrapolation algorithms

- Signal extrapolation algorithms are very well studied in the field of spectral estimation
 - Autoregressive (AR) models: covariance, modified covariance, Yule-Walker, and Burg
 - The AR model predicts the time series data at a certain time from the linear sum of the previous data
 - Burg technique has high resolution for short data records and it produces always a stable model
 - Other AR models, like as covariance and modified covariance AR models produce unstable models and Yule-Walker model performs well only for large data records

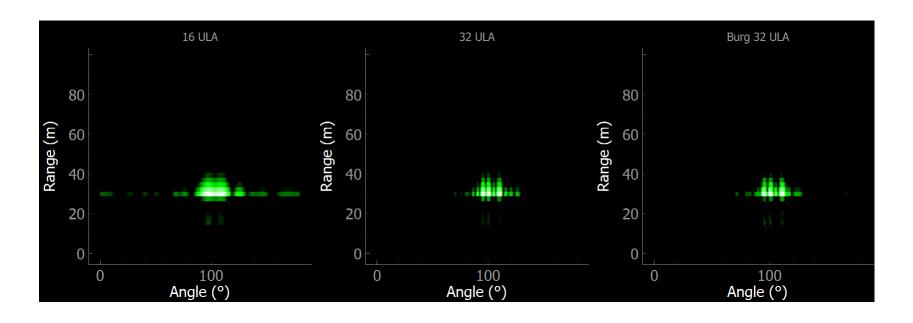


Fast Burg algorithm

- Traditional Burg algorithm can be readily found for example in Mathworks and Python spectrum libraries, but it is extremely slow
- Our fast Burg algorithm utilizes matrix multiplication that we can estimate all range bins at the same time
- We have improved the calculation time considerably
 - It is 14.5 times faster compared to the conventional Burg algorithm, when 64 radar channels was used, and the AR order was 48
- Our new fast Burg algorithm can be used in real time measurements



Fast Burg algorithm, experimental resuls, FMCW



Fast Burg algorithm, experimental resuls, FMCW

Fast Burg algorithm, JCAS simulation results

Conclusions

- In MIMO radars increasing the spatial resolution requires multiple channels and thus increases the complexity of the system
- JCAS systems further increase the complexity
- In fully digital MIMO systems interpolation and extrapolation algorithms can be utilized to increase the spatial resolution through virtual channels
- Fast Burg algorithm can increase the spatial resolution in almost real time both in FMCW and JCAS systems