RF SAMPO – NOKIA VETURI

ECOSYSTEM PROJECT **RF and Antenna Technologies** for Industrial 5G networks and beyond

> Industrial lead: Saila Tammelin (Nokia) Project coordinator: Aarno Pärssinen (University of Oulu) Contact person: Marko E Leinonen (University of Oulu)

Base Station Model Based System Engineering

Antti Heiskanen

- Digital Twin ~ virtual up-to-date model of real-world physical counterpart
- Digital Twin simulated response ~ real-world physical counterpart response
- Model Based System Engineering is one methodology used within building up Digital Twin
- No standard modeling, simulation or analysis methods
- Many abstraction levels, modeling whole system or part of system. Which phenomena not modelled or which requirements cannot be checked via simulation ?
- Ideally, modified Digital Twin could be representation of modified existing counterpart or representation of future real world counterpart

Contents

Throughout presentation: consider product lifetime/feedback loops: **build-up** and **up-date Digital Twin**

- Challenge of freezing product and standard requirements, price and time to market
- Challenge of specifying optimal technical architecture and specify per design block requirements

٠...

High Power - Base Station Project - EXAMPLE

Conclusions

Challenge of freezing product and standard requirements, price and time to market

Product		Re qI '&3\jP2_ A>_a /{ Digital Twin ^a r: 8Z 2%67V wb
 Product- and requlatory requirements 		Model boundaries, Modeling * *
- Standard's and features that shall be supported	(feedback to/from?	9 Simplifications 0 ^]G i]pxr
- Co-existence requirements	feedback accuracy?)	နို Simulation-analysis-feedback-Loop
- vernication		Unknown's and Error's i 7 0; &,
		2 p Abx@R & gF:{ c)"H*>

- Huge number of details to commit and guarantee that product shall be compliant
- how to stay within budget, agree and freeze requirements and still get on time into the market?

Challenge of specifying optimal architecture and specify per design block requirements

(feedback to/from? feedback accuracy?)

R	e	q	I '	& 3 \	j P 2	2 _		A >	_ a	1	{	
D	ic	jita	al Tw	<mark>/in</mark> [•• • 8	Z {	2 т	%6 м २	7 V A A	w ^ м	b	
č	;	Mc	odel	bou	ndar	ies	, M	ode	elind	v *		
R 9		Sir	nolif	ficat	ions	к 1 0	0 ^	1 G	5 1 i	* A *] D	Y Y	۱ ۲
9		Sir	nula	tion	-ana	lvs	is-f	eed	dbad	:k-L	_00	op
G F		Un	kno	wn's	and	l Fr	ror	's i	7	0;	&	,
m			W	J 5 7	v >	ų		JS	6	x b	Qı	n
		2	р	Abx	@ R	&	g F	: {	С) "	H 3	* >
	>	b	Y >	Z # ;	k 5	G	{ G	@`	ι	b	1 1	N a

Huge number of design choice combinations → How to select the best combination for the product?
 how to verify optimal choice through model-simulate-analyze-feedback-Loop?

High Power - Base Station Project – EXAMPLE - schedule

- Parallel developments without possibility to verify as whole until at the end of project
- SW, Algorithms/parameterization, HW and mechanics are developed parallel using wide mixture of methods
- Huge number of people, different technical areas and 3rd parties inputs
- What kind of model-simulate-measure-analyze-feedback-Loop?

High Power - Base Station Project – EXAMPLE – feedback-loops

• Product is modeled as sub-system (~Architecture spec) and is divided further into modules (~Module spec)

- o Model and requirements are continuously updated while project goes forward
- Model is not accurate enough and some modules performance is optimized through R&D debugging methods
- Debugging methods and tuning-feedback is very complex matter, what needs to be changed and it helps?

3rd party: Project- and Product requirements \iff Architecture Requirements/Specifications-doc

R&D &3rd party: Per module design- and test requirements/specifications-doc \iff per proto test+doc (**next design?**)

R&D&3rd party:I&V test matrix and test requirements/specifications-doc \iff per unit proto test+doc (**next design?**)

3rd party feedback

High Power - Base Station Project – EXAMPLE – Debugging methods and tuning feedback:

Optimization of RF PA and linearization is very complex and time consuming task

- o Cannot be modelled and simulated accurately enough and often requires measurement based iterative lab-tuning
- Simulation and tuning methods are complex and difficult to perform in advance, dedicated setups and analyses are needed and used
- Often used tools: Excel, Matlab, AWR/Aplac/ADS, CST, LP-data,...many commercial and in-house tools are used, each optimal for some narrow use case

- o AMAM AMPM (Power sweep)
- Frequency Response (frequency sweep)
- Modulated power sweep response
- o (CCDF, ACP, power consumption, Harmonics, Thermal, Non-operating band emissions)
- Special characterizations/tuning tests

- $\circ~$ Linearization with modulated carrier (Linearized response)
- o Thermal test
- $\circ~$ Gate and Gain rice time test
- Ruggedness test
- $\circ~$ Dynamic AMAM AMPM measurement and BB model Gain-model

Matlab-HW-in-the-loop-simulation/Characterization setup example (Generalized memory polynomial model):

RF PA Characterized, and model fitted using BB signal \rightarrow sub 1% accuracy achieved, excellent? Ο

60

-600

- Suppose the performance is not sufficient, for example meets module requirements but does not linearize sufficiently? What to do, what Ο tuning/parameterization feedbac to give? Model fit-is local and huge number of model parameters give same accuracy
- Suppose Module level Peak power and power consumption requirements are not met. What to do, what tuning/parameterization feedback to give? Ο
- -> Even with accurate local models.. One easily ends up on doing traditional parameterized sweeps and finds optimal solution by comparing results

200

400

600

-20

-15

Relative PA output power dBm

-10

-5

Matlab-HW-in-the-loop-simulation/Characterization setup example:(Generalized memory polynomial pre-distortion model):

- RF PA linearized with Matlab based pre-distortion algorithm while slightly below target maximum RMS power.
- Suppose the linearized performance is not sufficient at target maximum power, while meets module requirements are met. What to do?
- → Special modeling, analysis and test methods are needed so that one does not end up on doing iterative testing...

47.62 dBm PAR 9.8dB: Matlab spectrum vs FSW spectrum of before and after linearization

PA output (ADC input) before

- MBSE methology is useful within complex base station projects. It helps to see larger picture and parallel development of sub-systems is possible.
- Usage of MBSE would be easier if simulation methods-, interface-, modeling-, data storageand model filtting is standardized
- Some very complex phenomena are difficult to model and system performance predictions and design change predictions FAIL. Such cases needs to be made sub-model and more effort put into it
- Further development for analysis methods is needed, such that quide to correct design change without iterative parametric sweeps

Thank you!

RF-SAMPO.ORG

(back-up slide) High Power - Base Station Variant Project – EXAMPLE – schedule

SW+FPGA etc. drops

- Often times completely or partly done by 3rd party. Sometimes delays cause project challenges via delaying feedback from R&D and I&V.
- o Parameterization/debug based on co-work through unit level I&V tesing
- Algorithm's performance impact into HW requirements relaxation is based on assumptions/reference (for example linearization improves RF PA performance)
- Usually partly modelled into R&D subsystem line-up calculation-tool

TXRX+PSU

- o Often times frequency dependent compoents selected based on datasheets. Few build-test&tune-rounds.
- o Often times special simulations not needed, per proto matching/tuning optimization done at lab
- o Sometimes circuit level simulations and/or CST used for design/debug
- Modelled into R&D subsystem line-up calculation-tool with algorithms correction assumptions

RF PA

- o Often times project and product botleneck via many reaons:
 - -Many builds and tuning (demo, proto's, 2nd Source build, Corner Build, mass production series),
 - -No simulation models, or modeling too innaccurate
 - -Linearization impact into performance difficult to predict in advance and in the end always needs final tuning/verification with target platfrom linearization
 - -Linearization+RFPA performance: either one can be over or under specified, or combined poor performance is mystery
 - -Performance estimation and **analysis** is insufficient
- o Often circuit simulations and/or CST used for design/debug
- o Modelled into R&D subsystem line-up calculation-tool with algorithms correction assumptions

Filter

- Usually simulations + build's + module testing done by 3rd party, but R&D makes also own module verification and tuning suggestions
- Long lead time within proto's
- Modelled into R&D subsystem line-up calculation-tool with algorithms correction assumptions

Mechanics

- o Usually enherited from Lead-product. Minor modifications allowed, sometimes needed.
- Mechanics modeling done by editing model received from Lead procut, Filter vendor and other possible 3rd parties

Unit

- Builds done with existing Mechanics+SW+FPHA-drops+HW
- o Time consuming testing, Not all filed operation use cases testerd and all unit contents may not be mature yet

Should be simulated as whole system but...

Huge number of 3rd parties and per module parallel development → how to design and verify modules? What kind of Model-simulate-measure-analyze-feedback-Loop?