

Metasurfaces for future wireless communications

Viktar Asadchy

Department of Electronics and Nanoengineering, Aalto University

Acknowledgement

Also my other colleagues: S.A. Tretyakov, A. Diaz-Rubio, S. Tcvetkova, F. Cuesta, M. Albooyeh, A. Elsakka, M. Movahediqomi

Designer Materials and Devices group

Shadi Safaei Jazi Doctoral Researcher <u>shadi.safaeijazi at aalto.fi</u>

Bahman Amrahi Doctoral Researcher bahman.amrahi at aalto.fi

Mohammad Mahdi Asgari Doctoral Researcher <u>mohammadmahdi.asgari at aalto.fi</u>

Guo Wei Master Student <u>guo.wei at aalto.fi</u>

Our expertise

Current wireless communications

Going to higher frequencies means:

- Higher price
- Higher complexity
- More interference issues
- Higher energy consumption
- Less multipath propagation

Reconfigurable transmitters and receivers

Critical aspects in mmWave communications

High free-space path loss and sensitivity to obstacles

Denser antenna arrays with smaller elements

- O'Hara et al, A Perspective on Terahertz Next-Generation Wireless Communications, Technologies 7, 43, 2019.
- R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An Industrial Viewpoint, IEEE TAP 70, 10, 2022.

Future wireless communications

Reconfigurable transmitters and receivers and Smart Environment

Reconfigurable intelligent surfaces:

- Passive or almost passive (inexpensive)
- No interference
- Low maintenance cost

Example of RIS deployment in Hong Kong city

60% coverage

80% coverage

R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An Industrial Viewpoint, IEEE TAP 70, 10, 2022.

Indoor environments

Research interest

Publications in each year. Keywords: "**reconfigurable intelligent surface**". *Source: https://app.dimensions.ai*

History of the field

Diffraction gratings

C. Palmer, E. Loewen, Diffraction Grating Handbook, 2005

N. Payam, F. Yang, and A.Z. Elsherbeni, Reflectarray antennas: theory, designs, and applications, 2018.

Metasurfaces

H.-T. Chen, et al, A review of metasurfaces: physics and applications, Reports on progress in physics 79, 7, 2016.

Reconfigurable intelligent surfaces (RISs)

Y. Liu et al, Reconfigurable intelligent surfaces: Principles and opportunities, IEEE CST 23, 3, 2021.

Our metasurface experience

- Asadchy et al, Physical Review B 94, 7, 2016.
- Díaz-Rubio, Asadchy et al, Science Advances 3, 8, e1602714, 2017.

Passive vs reconfigurable

Passive and Dynamic \rightarrow IRS/RIS

R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An Industrial Viewpoint, IEEE TAP 70, 10, 2022.

Multifunctional metasurfaces for 6G

One functionality

One functionality

2 functionalities

Towards highly multifunctional structures: metacrystals

Groups of Jelena Vuckovic, Ole Sigmund, Andrei Faraon, Shanhui Fan, Jonathan Fan, Alejandro Rodriguez, Nader Engheta, and many others

Diffraction orders

6 functionalities

Average efficiency 92%

4 functionalities

Average efficiency 87%

Full-wave simulations

3D-printed sample

	In-plane resolution	Out-of-plane resolution
FDM	250 um	100 um
SLS	500 um	100 um
SLA	85 um	25 um

Fabricated structure operating at 50GHz

PLA permittivity measurements

Measurement setup

Measurement results. Absorption

Measurement results. Anomalous reflection

Maximum average efficiency for 4 functionalities reaches 79.3% at 49.5 GHz

References

- M.M. Asgari, P.B. Catrysse, H. Wang, S. Fan, and V.S. Asadchy, Multifunctional Metacrystals for Advanced Wave Engineering, 17th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials 2023), 2023.
- P.B. Catrysse, S. Fan, H. Wang, V. Asadchy, M. Asgari (2023). Unpowered/Passive directional routing meta-structure for 5G+ communications. Provisional Patent Application filed with United States patent and trademark office. Application No.: 63/537,133. Filing Date: 2023-09-07.

We are looking for industrial collaborations!

