
Metasurfaces for 
future wireless 
communications

Viktar Asadchy

Department of Electronics and 
Nanoengineering,
Aalto University



Acknowledgement

2

P.B. Catrysse                 H. Wang          S. Fan

Stanford University, USA

M.M. Asgari

Aalto University, Finland

Also my other colleagues: S.A. Tretyakov, A. Diaz-Rubio, S. Tcvetkova, F. Cuesta, M. Albooyeh, A. Elsakka, M. Movahediqomi



Designer Materials and Devices group

3



Our expertise

4

Theory

Simulations

Experiment

We work here



Current wireless communications
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Going to higher frequencies 
means:
 
• Higher price
• Higher complexity
• More interference issues
• Higher energy consumption
• Less multipath propagation

Reconfigurable transmitters and receivers

M-MIMO Relay



Critical aspects in mmWave communications

6

Terahertz wave atmospheric power 
attenuation for temperature T = 20∘C

• O’Hara et al, A Perspective on Terahertz Next-Generation Wireless Communications, Technologies 7, 43, 2019.
• R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An 

Industrial Viewpoint, IEEE TAP 70, 10, 2022.

High free-space path loss
and sensitivity to obstacles

Denser antenna arrays with 
smaller elements



Future wireless communications
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Reconfigurable intelligent 
surfaces:
 
• Passive or almost passive 

(inexpensive)
• No interference
• Low maintenance cost

Reconfigurable transmitters and receivers
and Smart Environment

Reconfigurable 
intelligent surfaces 

(RISs)

Small MIMO



Example of RIS deployment in Hong Kong city
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60%	coverage 80%	coverage

R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An 
Industrial Viewpoint, IEEE TAP 70, 10, 2022.



Indoor environments
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Research interest
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Publications in each year. Keywords: “reconfigurable intelligent surface”.
Source: https://app.dimensions.ai 



History of the field
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Y. Liu et al, Reconfigurable intelligent 
surfaces: Principles and 
opportunities, IEEE CST 23, 3, 2021.

Reconfigurable intelligent 
surfaces (RISs)

H.-T. Chen, et al, A review of 
metasurfaces: physics and 
applications, Reports on 
progress in physics 79, 7, 2016.

Metasurfaces

N. Payam, F. Yang, and A.Z. 
Elsherbeni, Reflectarray 
antennas: theory, designs, and 
applications, 2018.

Reflectarray antennas

C. Palmer, E. Loewen, 
Diffraction Grating Handbook, 
2005

Diffraction gratings



Our metasurface experience
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• Asadchy et al, Physical Review B 94, 7, 2016.

• Díaz-Rubio, Asadchy et al, Science Advances 3, 8, e1602714, 2017.



Passive vs reconfigurable

13

R. Flamini et al, Toward a Heterogeneous Smart Electromagnetic Environment for Millimeter-Wave Communications: An 
Industrial Viewpoint, IEEE TAP 70, 10, 2022.

SINGLE FUNCTIONALITY

ELEMENT-BY-ELEMENT 

TUNABILITY



Multifunctional metasurfaces for 6G
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Tx #1

Rx 
#1

Metasurface

Metasurface

~100GHz

Tx #2

Rx #2
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Tx #3



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!
𝜔!, 𝜃′!, 𝑝′!, 𝑚′!

One functionality



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!

𝜔!, 𝜃′!, 𝑝′!, 𝑚′!

One functionality



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!

𝜔!, 𝜃′!, 𝑝′!, 𝑚′!
𝜔!, 𝜃′′!, 𝑝′′!, 𝑚′′!

One functionality



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!

One functionality



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!

2 functionalities

𝜔", 𝜃", 𝑝", 𝑚"

𝜃"



Arbitrary scattering of EM waves
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Metasurface

𝜃!

𝜔!, 𝜃!, 𝑝!, 𝑚!

3 functionalities

𝜔", 𝜃", 𝑝", 𝑚"

𝜃"

𝜃#
𝜔#, 𝜃#, 𝑝#, 𝑚#



Towards highly multifunctional structures: 
metacrystals
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pixel with 
permittivity 𝜀$,&,' 

Uniform 
along this 
direction

Periodic 
along this 
direction

thickness

𝐷 > 𝜆

𝐻 > 𝜆

Groups of Jelena Vuckovic, Ole Sigmund, Andrei Faraon, Shanhui Fan, Jonathan Fan, Alejandro Rodriguez, Nader Engheta, and many 
others



Diffraction orders
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𝑑 = 4.2𝜆



6 functionalities
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Average	ef-iciency	92%



4 functionalities
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Average	ef-iciency	87%



Full-wave simulations

25

TE, 𝜃 = 0∘ TM, 𝜃 = 0∘ TE, 𝜃 = 20∘ TM, 𝜃 = 20∘

Anomalous reflection Anomalous reflection Absorption Absorption



3D-printed sample
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Fabricated structure operating at 50GHz

3.58𝜆
= 2.14	cm

33.6𝜆 = 20.16cm

10.5𝜆 =6.3 cm

In-plane 
resolution

Out-of-plane 
resolution

FDM 250 um 100 um

SLS 500 um 100 um

SLA 85 um 25 um

3.58𝜆
= 2.14	cm

33.6𝜆 = 20.16cm

10.5𝜆 =6.3 cm



PLA permittivity measurements
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Measurement setup
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Measurement results. Absorption
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Measurement results. Anomalous reflection
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Maximum average efficiency for 4 functionalities reaches 79.3% at 49.5 GHz
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We are looking for industrial collaborations!


