Future antenna challenges and opportunities

Finnish RF seminar "Future mobile radio frequency technologies and solutions"

University of Oulu, March 16th 2023

Ville Viikari, Juha Ala-Laurinaho, Jaakko Haarla, Jari Holopainen, Matti Kuosmanen, Veli-Pekka Kutinlahti, Henri Kähkönen, Anu Lehtovuori

Contents

- Why antennas matter?
- Opportunities
- Challenges
 - Coupling: examples 1-2
 - Fabrication and integration: examples 3-4
 - Heat: example 5

Summary

Why antennas matter?

 Cellular networks
 Base stations
 Radio wave generation

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

 Image: Cellular networks
 Image: Cellular networks
 Image: Cellular networks

80 % of cellular networks

65 % of base stations

0.5 % of global electricity

0.4 % of global electricity

0.26 % of global electricity

[1] A. S. G. Andrea *et. al.*, "On global electricity usage of communication technology: trends to 2030," *Challenges*, 2015.
[2] ETSISSR05_024, NSN
[3] O. Blume *et. al.*, "Approaches to energy efficient wireless access networks," ISCCSP 2010.

How efficiently are microwaves used?

@ 3 GHz:
$$\frac{P_R}{P_T} = \frac{\eta_{UT} \eta_{AP} A_{UT} A_{AP}}{\lambda^2 r^2} \approx 10^{-10}$$

Effect of higher frequency with constant antenna size

Higher frequencies enable better use of space

Challenges of higher frequencies

Example 1: Antenna cluster concept

Example 1: Antenna cluster concept

Antenna arrays and clusters

Antenna array

Ideally: Feeding affects the beam Orthogonal element patterns No coupling

Antenna cluster

Ideally: Feeding affects the impedance Non-orthogonal element patterns Coupling

In practice: Feeding affects the beam and the impedance and efficiency, polarization etc. —>Conventional methods fail —>Convergence of antenna arrays and clusters

Example 2: Active antenna array

V.-P. Kutinlahti et al. "Optimizing RF efficiency of a vector-modulator-driven antenna array," IEEE AWPL 2020

V.-P. Kutinlahti et al. "Amplifier-antenna array optimization for EIRP by phase tuning," EuCAP 2022

Measured improvement in radiated power (compared to the case where coupling is ignored)

V-P Kutinlahti et. al., "Analyzing and optimizing the EIRP of a phase tunable amplifier-antenna array," submitted to IEEE Journal of Microwaves

Angular plot across hemi-sphere

Coupling could also be used for other purposes

Surface-mountable 3D antenna arrays

H. Kähkönen et. al, "Dual-polarized Ka-band Vivaldi antenna array," IEEE TAP, 2020

H. Kähkönen et. al, "A Modular Dual-Polarized Ka-Band Vivaldi Antenna Array," IEEE Access, 2022

H. Kähkönenet. al, "Comparison of additively manufactured and machined antenna array performance at Ka-band," IEEE AWPL 2022

H. Kähkönen et. al, "Surface-mounted Ka-band Vivaldi antenna array," IEEE OJAP, 2021

Example 3: Modular dual-pol 18-30 GHz array

3D-printed array module 4x4 dual-pol elements

PCB module with beam former chips

H. Kähkönen et. al, "A Modular Dual-Polarized Ka-Band Vivaldi Antenna Array," IEEE Access, 2022

Example 3: Modular dual-pol 18-30 GHz array

Example 3: Modular dual-pol 18-30 GHz array

Example 4: New fabrication methods

Traditional BoR-antenna

- Excellent electrical performance
- Solid metal heavy and expensive (at lower frequencies)
- Costly fabrication

Inverted 6-18 GHz BoR-antenna

- Metal-coated plastic shell
- Lightweight, minimal use of materials
- Excellent electrical performance
- Inexpensive fabrication processes available

Inverted BoR structure

M. Kuosmanen et. al., "Dual-Polarized 6–18 GHz Antenna Array with Low-Profile Inverted BoR Elements," IEEE OJAP 2022

Simulated (infinite array) active reflection coefficient

Challenge: cooling

4-channel beamformer chip 1.5 W, 3.6 x 3.6 mm² ~0.12 W/mm²

One heating element in sauna stove 1500 W, 60 000 mm² ~0.025 W/mm²

Example 5: Scalable 8x8 24-29.5 GHz liquid-cooled array

J. Haarla et. al., "Scalable 3D-printable antenna array for 28 GHz with liquid cooling," accepted with major revision to IEEE TAP

Different cooling approaches

No fan No liquid cooling

• No continuous use of receiver or transmitter

Fan (forced convection)

 No continuous use of transmitter

Receiver on

Transmitter on

Liquid cooling

 Continuous use of receiver and transmitter

CFLIR

Antenna PCB interface

Simulated (solid) and measured (dashed) gain

Summary

- mm-wave frequencies may provide much better use of radio wave energy
- Mutual coupling always exist and can be used for benefit
- 3D surface-mountable arrays can provide superior performance
- Thermal performance becomes vital

Thank you!

RF-SAMPO.ORG