Modelling and emulation of Dband radio channel

RF Sampo seminar Oulu, 16.3.2023 Pekka Kyösti, Mikkel Bengtson, et al.

Outline

- Introduction
 - Motivation
- Model ingredients
 - Propagation data
 - New channel measurement
- Channel modelling
- Emulation
 - Validation by lab measurements
- Summary

사 KEYSIGHT

Introduction

Introduction

- Sub-THz (100-300 GHz) frequency band may provide tens of GHz bandwidths
 - Interest in 6G research though commercial applications are far in future
- Channel characterization is ongoing in many research projects
- Channel emulation will be needed at some point of time
- →A modelling and emulation trial for specific indoor scenarios:
- Use case: A virtual reality user (indoor)
 - $f_c=140$ GHz, BW > 1 GHz, link distance <20 m moderate or no mobility

Propsim

KEYSIGHT

Radio Channel Reconstructed

Why we do channel modelling and emulation?

- Radio channel is a fundamental part of any wireless system
- The channel itself cannot be engineered
- System design must be able to utilize channel characteristics
- Channel models describe the radio propagation channel
- Testing against channel models reveals real-life performance
- The PROPSIM Channel Emulation Solution recreates radio channel conditions defined by channel models

What is fading emulation?

Conducted MIMO fading channel emulation

$$\mathbf{Y}(t,f) = \mathbf{H}(t,f)\mathbf{X}(t,f) + \mathbf{N}$$
$$\mathbf{H}(t,f) = \iint \mathbf{G}_{rx}(\Omega_2, t, f)\mathbf{h}(\Omega_1, \Omega_2, t, f)\mathbf{G}_{tx}^T(\Omega_1, t, f) d\Omega_1 d\Omega_2$$

What is this talk about?

- Make the first in the world radio channel emulation of a 6G channel model using Propsim fading emulator.
- The channel model is based on D-band (140 GHz) propagation measurements conducted by the University of Oulu, Aalto University, and Keysight.
- Channel models are implemented in Propsim and emulated in laboratory. The emulated channel is measured from Prosim input/output and compared to the original channel model.
- Key elements:
 - 6G sub-THz propagation + measurement, 6G channel model, wideband 6G channel emulation, comparison of the model and the emulated channel

Sub-THz radio channel

New frequency area

- Sub-THz radio frequencies: 100–300 GHz
- Molecular absorption at specific frequencies
- High transmission loss (no penetration)
- High diffraction loss (weak diffraction)
- Strong shadowing by obstacles (e.g. human body)
- Dominant paths are LoS and reflections
- Signal bandwidths of several GHz
- Well available, support for very high data rates
- High path loss \rightarrow need for high gain antennas
- Beam alignement

Model Ingredients

Propagation data from Aalto & UOulu

Multipath propagation data

P. Kyösti, K. Haneda, J-M Conrat, A. Pärssinen, "Above-100 GHz wave propagation studies in the European project Hexa-X for 6G channel modelling," in *EuCNC* 2021.

- The collection of propagation paths from measurements at 140 GHz
- Coordinates and types of interaction points are available in the ray-tracing assisted measurement data, as well as channel coefficients for each multipath/interaction
 → Propagation delays and angles of arrival/departure

power [dB]

- Measured environments are characterized by a layout or point cloud
 - \rightarrow Support for localization and sensing investigations

14

14

Aalto Entrance hall measurements

140 GHz

M. F. De Guzman, P. Koivumäki and K. Haneda, "Double-directional Multipath Data at 140 GHz Derived from Measurement-based Raytracer," in VTC2022-Spring, Helsinki, Finland, June 2022.

M KEYSIGHT

Aalto Entrance hall measurement

Example propagation channel

From Aalto's measurement

Time invariant double-directional power-angular-delay profile (PADP)

Point cloud of the environment from laser scanning Tx, Rx, and multipath

Multipath parameters

Aalto data

UOulu corridor measurement - Channel sounder

Core of the measurement setup is Keysight
 PNA-X network analyzer

χή γη

- VDI vector network analyzer extension module (VNAX) WR6.5 is used in the D-band
- Pasternack 10/9 degree (Az/EI) 25 dBi horn antennas are used at both ends
- Custom azimuth/elevation rotation stages at both ends for angular scanning
- Custom control software

UOulu corridor measurement setup

Source: J. Kokkoniemi, V. Hovinen, K. Nevala and M. Juntti, "Initial Results on D- Band Channel Measurements in LoS and NLoS Office Corridor Environment," 16th European Conference on Antennas and Propagation, 2022.

KEYSIGHT

• The environment is a T-shaped office corridor

- Both LoS and NLoS positions
- Bi-directional propagation at 140 GHz
 - Path gains, delays, AoA, AoD, EoA, EoD

Parameter	Value
Frequency	110–170 GHz
Total bandwidth	60 GHz
Sub-band bandwidth	15 MHz
Impulse response length	66.7 ns
Impulse response resolution	16.7 ps / 5 mm
Maximum distance	20 meters
Antenna gain (Tx/Rx)	25 dBi
Antenna 3-dB beamwidth	10° / 9° (Az/El)
Tx scan range at R1	-80° - 80° (Az), -40.5° - 40.5° (El)
Tx scan range at R2	-80° - 60° (Az), -40.5° - 13.5° (El)
Rx scan range at R1	$-90^{\circ} - 90^{\circ}$ (Az), $-40^{\circ} - 45^{\circ}$ (El)
Rx scan range at R2	$-90^{\circ} - 0^{\circ}$ (Az), $-40^{\circ} - 45^{\circ}$ (El)
Tx angle resolution	$10^{\circ} / 9^{\circ} (Az/El)$
Rx El angle resolution	5°

Data Analysis

Very sparse channel in general and the energy is mostly coming from the large surfaces!

Model Ingredients

Blockage measurement: Keysight + UOulu

Channel sounder

KEYSIGHT

- Core of the measurement setup is Keysight
 PNA-X network analyzer
- VDI vector network analyzer extension module (VNAX) WR6.5 is used in the D-band
- Pasternack 10/9 degree (Az/EI) 25 dBi horn antennas are used at both ends
- Custom control software

WR6.5 VNAX Specification	s
Standard Frequency Coverage (GHz)	110-170
Dynamic Range (BW = 10Hz, dB, typical)	120
Dynamic Range (BW = 10Hz, dB, minimum)	110
Magnitude Stability (±dB)	0.25
Phase Stability (±degrees)	4
Test Port Power (dBm typ. power)	13
Directivity (dB)	30

D-Band Human Body Shadowing (1/3)

Measurement system

- VNA-based continuous-time measurements in anechoic chamber
- Different user cases (single human blocker)

Measurement system and scenario

x/m † Illustration of trajectories for human blockage measurements

Measurement setun

modouromont	ootup	
Parameter	Unit	Value
Freq. range	GHz	139–141
Bandwidth	GHz	2
Freq. point	/	201
Delay resolution	ns	0.5
Max. excess delay	ns	100
IF bandwidth	kHz	100
TX/RX ant. gain	dBi	25
TX/RX HPBW	deg	10

D-Band Human Body Shadowing (2/3)

Initial Results of Single Person Human Blockage Effect

- Reference measurement results using standard cylinder
- Characterization of human body shadowing with volunteer A/B/C

Reference measurement with metallic cylinder

Comparison of D-band human blockage attenuation from measurement and theoretical models

Attenuation by Human Blockage (3/3)

Additional attenuation caused by human blockage @different volunteers, y-axis locations

The natural swinging motion of the body parts (e.g., hands, torso, and head) will cause significant fluctuation at higher frequency

Channel Modelling

Extensions to measured propagation data

- 1. Inclusion of human blocking events
- 2. Inclusion of small Doppler shifts for multipath
- 3. Inclusion of continuous transition scenario by interpolating measured LOS & NLOS paths using ray tracing
- 4. Inclusion of adaptive beam steering by Tx and Rx arrays

Channel modelling

Inclusion of human blockage

Human blockage

Introducing dynamics

KEYSIGHT

- Human blockage at 140 GHz
- Measurements performed with UOULU

29

Blockage scenario

KEYSIGHT

Blockage scenario

Model overview

$$H(t,\tau) = \sum_{n=1}^{N} \delta(\tau - \tau_n) \sqrt{\frac{P_n(t)}{N}} F_{rx}(t,\Omega_n^{Rx}) \exp(j\Phi_n) F_{tx}(t,\Omega_n^{Tx}) \exp(j2\pi f_{d,n} t)$$

- $P_n(t)$ Time variant power for each path including the blockage impact
- $F_{rx}(t, \Omega_n^{Rx}), F_{tx}(t, \Omega_n^{Tx})$ Antenna pattern
- + Φ_n Initial random phase for each path
- $f_{d,n}$ Optional Doppler spectrum following SUI-spectrum

Blockage scenario

Moving blocker – beam switch

W KEYSIGHT

Channel modelling

Inclusion of Doppler shifts

Adding small Doppler components

SUI spectrum

- To mimic a small motion of the environment
- SUI-model for small environmental Doppler
- Based on a static link (i.e. no moving terminals)
- $f_{max} = 8 Hz$ selected

• Doppler shifts for multipath are drawn randomly from the SUI distibution:

$$f_d(f) = \begin{cases} \frac{1}{1.1673f_{max}} - \frac{1.72f}{1.1673f_{max}^3} + \frac{0.785f^4}{1.1673f_{max}^5} & -f_{max} \le f \le f_{max} \\ 0 & \text{else where} \end{cases}$$

Channel modelling

Inclusion of transition

Interpolating measurement data

- Simple environment image method used for ray tracing
- Comparison of spatial information of rays
 with channel sounding data
- Determination of gain at LoS and NLoS for each identified path

Transition

• The transition at position x is calculated as

$$P_n(x) = P_{FSPL}(l_n(x)) + P_{ant} + P_{RL}(\theta(x)) [dB]$$

Model

$$H(x,\tau) = \sum_{n=1}^{N} \delta(\tau - \tau_n(x)) \sqrt{\frac{P_n(x)}{N}} F_{rx}(x,\Omega_n^{Rx}) \exp(j\Phi_n) F_{tx}(x,\Omega_n^{Tx}) \exp\left(j2\pi \frac{l_n(x)}{\lambda}\right)$$

• $\tau_n(x) = \frac{l_n(x)}{c}$ – Delay of path based on the path length $l_n(x)$ and speed of light c

- $P_n(x)$ Power of the path n
- $\exp\left(j2\pi \frac{l_n(x)}{\lambda}\right)$ Phase term calculated based on the path length and the wavelength $\lambda = 2.14 \ mm$ at 140 *GHz*
- x The position of the moving terminal

D-band directional measurement extended with ray tracing to NLOS→LOS transition

Channel modelling

Inclusion of antenna beams

With isotropic pattern

- Baseline data is about the propagation channel
- \rightarrow antenna effect removed
- \rightarrow corresponds to use of isotropic antennas at both link ends

With directive antenna pattern

- Antenna beams are steered at each time instant to the direction providing the highest gain
- Practically only one high gain tap remains (in this scenario)
- Switch from a reflected path to the LOS path when Rx becomes visible to Tx

Channel modelling work

Recent **KEYSIGHT** efforts

- Research projects collect measurement data and develop channel modeling concepts
- Keysight has extended the stored channel model and implemented PoC demo using measurement data from University of Oulu and Aalto University
 - Embedding of time variant antenna beams —
 - Interpolation of multipath between Tx/Rx locations using ray tracing
 → Enables trajectories of Tx/Rx (for communication and sensing)
 - Introduction of small artificial Doppler shifts for multipath
 - Addition of time variant attenuation by measured human blockage pattern
 - E.g. by defining blocker trajectories or drawing blockage events randomly

Emulation

Validation by lab measurements

Emulation in the lab

- Channel models were implemented in Keysight Channel Studio GCM (SW)
- Emulation files for Keysight Propsim were generated
- Models were emulated at 2.0 GHz centre frequency and BW = 1.2 GHz
- Emulator's performance was measured in two different setups:
- 1. Network analyser + Propsim
 - for evaluating channel frequency and impulse responses, and power delay profiles (PDP)
- 2. Signal generator + Propsim + Signal analyser
 - for the Doppler Power Spectrum

Emulation

In the lab

PROPSIM F64

- Supports fading capacity needs that extend beyond the use cases and configurations of PROPSIM FS16
- End-to-end realistic and repeatable real-world performance testing of 5G multimode devices and base stations in the laboratory
- The optimal solution for Massive MIMO testing
- Full Antenna Array Sampling
- From 8 to 64 bidirectional TRX ports or unidirectional TX and RX ports
- Embedded VSA/VSG wireless signal analyzer

View F8800A Data Sheet

View F8800B Data Sheet

	O HT PROPSIM F64 Radio Channel Emulator F88008	•
•	113 114 115 116 117 118 119 120 9 - 0 0 - 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 - 0 - 0 -	
¢	9 9 100 101 102 103 104 105 106 107 108 109 110 111 112 10 10 10 102 103 104 105 106 107 108 109 110 111 112 10 100 100 100 100 100 100 100 100 100 101 111 112 10 100 111 112 112 100 100 100 100 100 100 100 100 100 100 100 100 111 112 112 100 100 100 100 100 100 100 100 100 100 1	0
	• •	
	• •	
Mark an Parison Anno Contaction - Standard Analy Contaction - Standard Analy - Standard - Standard - Standard - Standard - Standard -	49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 @-@ @ @-@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	All Director to Directory All Directory and Directory Control of the Control of the Control All Directory The Control of the Control of the Control All Directory The Control of the Cont
	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 100<	
	• •	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
F8800BRF1	0 000	

Keysight Channel Studio (SW)

- User-defined 3D spatial scenarios and dynamic modeling of movement
- Arbitrary and complex test scenarios including
 - Multi-frequency and multi-RAT HetNet test scenarios
 - Device-to-Device (D2D) supporting IoT and V2X scenarios
 - Complex field to lab scenarios such as High-Speed Train test scenarios.
- Antenna model embedding
 - Including antenna library and Antenna Array Tool for modeling arrays and beams
- Available standard channel models
 - 3GPP TR38.901, TR36.873 and SCME
 - IMT-Advanced
 - Winner
 - TGn/ac/ax

- ✓ LTE 3D / Massive MIMO
 - Static and dynamic 3D beamforming and MU-MIMO test cases
 - 3GPP TR 36.873 3D MIMO channel models
 - CMCC eNB CP5/CP6 acceptance test plans

✓ 5G mmW test cases

- 3GPP TR38.901 Channel models
- Supports mmW model frequencies including 28/39GHz at OTA/IF domain

✓ V2V, V2X, D2D scenarios

- Drop the cars on the map
- Select antennas, multiple per car supported
- Choose the environment

Validation

Channel Frequency Response (CFR)

- Instantaneous CFRs at various time instants
- Measured by Keysight PNA-X
- Good match between the model and the emulation

M KEYSIGHT

Channel Frequency Response (CFR)

Blockage - Comparison

Channel Frequency Response (CFR)

Transition - measurement

Validation

Channel Impulse Response (CIR)

- Instantaneous CiRs at various time instants
- Measured by Keysight PNA-X
- Good match between the model and the emulation

Channel Impulse Response (CIR)

Blockage - Measurement

Transition - Comparisor

Channel Impulse Response (CIR)

Summary

- Specified measurement-based dynamic channel models at sub-THz (140 GHz)
- Emulated models with Keysight PropsimTM at an IF
- Validated the emulations by lab measurements and comparison to the models
- Good match in: Power delay profiles, Wide band frequency responses, Time-variant shadowing by human blockage

\rightarrow The world's first HW emulation of a 6G channel model

- Thanks for the good co-operation to
 - Oulu University: P. Zhang, V. Hovinen, K. Nevala, J. Kokkoniemi, A. Pärssinen
 - Aalto University: F. De Guzman, P. Koivumäki, K. Haneda

Emulation & Lab Measurement

M KEYSIGHT

Thank you

KEYSIC	GHT	PR	OPS	IM F	64 I	Radio	Chanr	iel Emul	lator F8	3800B						
	_					•										•
	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
		- @		- @	1	- 🗑		- @		- @	1	- 🐼		-0		-(2)
	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
					-								-			
	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
	10	0	10	- @		-@	0	0		- @	0	- @		-		-
	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
		•	•	•	•	•				•				•		•
	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
	10	- 10		-		- 🔞			10			- 🔞		-		- 🔞
	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
	۲	•					•	•		•		•	٠	•	•	•
	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
				- 😨	0	0	1	- 10						- 3		- 🔞
	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
Out Ports 7250MHz 100MHz	۲	۲	۲	۲	•	۲	•	۲	۲			٠	۲	•		•
/Out Ports 7250MHz 100MHz	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
		8		- 🕲		- 🕲		8	3			8		- 😨		- 📀
		In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
	۲	۲	۲	۲	۲	۲	۲	۲		•	•	•	•	•	•	•
	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
	1	6	1	- 🚳	1		1	8	6	- 😵	1	- 🛞	1	- 😵	۲	- 📀
	Out	In/Out	Out	In/Out	Out	in/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
	۲	۲	۲	٠	٢	٠	۲	•	•	٠	۲	۲	۲	٠	۲	•
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	8	6	8	8		- 🕑	8	1	6	8	1	6		- 3	۲	- 🕲
	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out	Out	In/Out
	۲	•	٠	٠	۲	۲	۲	۲	۲		۲	۲		•		
	-	2	2	4	5	6	7	8	9	10	11	12	13	14	15	16

(8)-(8) (8)-(8) (8)-(8) (8)-(8)

ut Ports 250MHz 00MHz Out Port 250MHz 00MHz

(8-(8) (8-(8) (8-(8)